Yolo Object Name Mapping
After executing yolo related examples, there will be a class number shown in every bounding boxes.
C example
sudo ./kl520_demo_generic_image_inference_post_yolo
connect device ... OK
upload firmware ... OK
upload model ... OK
read image ... OK
starting inference loop 100 times:
....................................................................................................
inference loop is done, starting post-processing ...
doing tiny yolo v3 post-processing ...
detectable class count : 80
box count : 6
Box 0 (x1, y1, x2, y2, score, class) = 45.0, 57.0, 93.0, 196.0, 0.965018, 0
Box 1 (x1, y1, x2, y2, score, class) = 43.0, 95.0, 100.0, 211.0, 0.465116, 1
Box 2 (x1, y1, x2, y2, score, class) = 122.0, 68.0, 218.0, 185.0, 0.997959, 2
Box 3 (x1, y1, x2, y2, score, class) = 87.0, 84.0, 131.0, 118.0, 0.499075, 2
Box 4 (x1, y1, x2, y2, score, class) = 28.0, 77.0, 55.0, 100.0, 0.367952, 2
Box 5 (x1, y1, x2, y2, score, class) = 1.0, 84.0, 50.0, 181.0, 0.229727, 2
output bounding boxes on 'output_bike_cars_street_224x224.bmp'
Python example
$ python3 KL520DemoGenericInferencePostYolo.py
[Connect Device]
- Success
[Set Device Timeout]
- Success
[Upload Firmware]
- Success
[Upload Model]
- Success
[Read Image]
- Success
[Starting Inference Work]
- Starting inference loop 50 times
- ..................................................
[Retrieve Inference Node Output ]
- Success
[Tiny Yolo V3 Post-Processing]
- Success
[Result]
{
"class_count": 80,
"box_count": 6,
"box_list": {
"0": {
"x1": 46,
"y1": 62,
"x2": 91,
"y2": 191,
"score": 0.965,
"class_num": 0
},
"1": {
"x1": 44,
"y1": 96,
"x2": 99,
"y2": 209,
"score": 0.4651,
"class_num": 1
},
"2": {
"x1": 122,
"y1": 70,
"x2": 218,
"y2": 183,
"score": 0.998,
"class_num": 2
},
"3": {
"x1": 87,
"y1": 85,
"x2": 131,
"y2": 117,
"score": 0.4991,
"class_num": 2
},
"4": {
"x1": 28,
"y1": 77,
"x2": 55,
"y2": 100,
"score": 0.368,
"class_num": 2
},
"5": {
"x1": 3,
"y1": 84,
"x2": 48,
"y2": 181,
"score": 0.2297,
"class_num": 2
}
}
}
[Output Result Image]
- Output bounding boxes on 'output_bike_cars_street_224x224.bmp'
The table listed below provides the corresponding object name for each class number.
Class Number | Object Name |
---|---|
0 | Person |
1 | Bicycle |
2 | Car |
3 | Motorbike |
4 | Aeroplane |
5 | Bus |
6 | Train |
7 | Truck |
8 | Boat |
9 | Traffic Light |
10 | Fire Hydrant |
11 | Stop Sign |
12 | Parking Meter |
13 | Bench |
14 | Bird |
15 | Cat |
16 | Dog |
17 | Horse |
18 | Sheep |
19 | Cow |
20 | Elephant |
21 | Bear |
22 | Zebra |
23 | giraffe |
24 | Backpack |
25 | Umbrella |
26 | Handbag |
27 | Tie |
28 | Suitcase |
29 | Frisbee |
30 | Skis |
31 | Snowboard |
32 | Sports Ball |
33 | Kite |
34 | Baseball Bat |
35 | Baseball Glove |
36 | Skateboard |
37 | Surfboard |
38 | Tennis Racket |
39 | Bottle |
40 | Wine Glass |
41 | Cup |
42 | Fork |
43 | Knife |
44 | Spoon |
45 | Bowl |
46 | Banana |
47 | Apple |
48 | Sandwich |
49 | Orange |
50 | Broccoli |
51 | Carrot |
52 | Hot Dog |
53 | Pizza |
54 | Donut |
55 | Cake |
56 | Chair |
57 | Sofa |
58 | Potted Plant |
59 | Bed |
60 | Dining Table |
61 | Toilet |
62 | Tv Monitor |
63 | Laptop |
64 | Mouse |
65 | Remote |
66 | Keyboard |
67 | Cell Phone |
68 | Microwave |
69 | Oven |
70 | Toaster |
71 | Sink |
72 | Refrigerator |
73 | Book |
74 | Clock |
75 | Vase |
76 | Scissors |
77 | Teddy Bear |
78 | Hair Drier |
79 | Toothbrush |