Create KL630 Single Model Example
1. Download Source Code
-
Download the latest kneron_plus_vXXX.zip into Windows/Ubuntu from https://www.kneron.com/tw/support/developers/. It is located at Kneron PLUS section.
-
Unzip kneron_plus_vXXX.zip
Note: {PLUS_FOLDER_PATH} will be used below for representing the unzipped folder path of PLUS.
-
Please contact Kneron to obtain the latest KL630_SDK_vXXX.zip.
Note: KL630 SDK can only be developed on Ubuntu
-
Unzip KL630_SDK_vXXX.zip
Note: {KL630_SDK_TOP_FOLDER_PATH} will be used below for representing the unzipped folder path of KL630 Develop Package.
-
Unzip {KL630_SDK_TOP_FOLDER_PATH}/03_SDK/02_Software_Tool_Kit/sdk_vX.X.X.tar.gz
Note: {KL630_SDK_FOLDER_PATH} will be used below for representing the unzipped folder path of KL630 SDK.
2. PLUS (Software) Development
-
Create my_kl630_sin_example folder
$ cd {PLUS_FOLDER_PATH}/examples/ $ mkdir my_kl630_sin_example
-
Add CMakelists.txt
# build with current *.c/*.cpp plus common source files in parent folder # executable name is current folder name. get_filename_component(app_name ${CMAKE_CURRENT_SOURCE_DIR} NAME) string(REPLACE " " "_" app_name ${app_name}) file(GLOB local_src "*.c" "*.cpp" ) set(common_src ../../ex_common/helper_functions.c ) add_executable(${app_name} ${local_src} ${common_src}) target_link_libraries(${app_name} ${KPLUS_LIB_NAME} ${USB_LIB} ${MATH_LIB} pthread)
-
Add my_kl630_sin_example.h
-
Please define the customized header structure and customized result structure in this file.
-
Header (my_kl630_sin_example_header_t) is used for sending data to SCPU firmware. What kind of data should be contained can be customized based on the your requirement.
-
Result (my_kl630_sin_example_result_t) is used for receiving data from SCPU firmware. What kind of data should be contained can be customized based on the output of model inference.
-
kp_inference_header_stamp_t must be contained in both header and result structures.
-
The JOB_ID describes the unique id of the task you want to execute in firmware, and it must be unique and above 1000.
-
This file should be synchronized with the .h file in SCPU firmware.
#pragma once #define MY_KL630_SIN_EXAMPLE_JOB_ID 3002 #define YOLO_BOX_MAX 100 typedef struct { uint32_t class_count; uint32_t box_count; kp_bounding_box_t boxes[YOLO_BOX_MAX]; } __attribute__((aligned(4))) my_kl630_sin_example_yolo_result_t; typedef struct { /* header stamp is necessary */ kp_inference_header_stamp_t header_stamp; uint32_t img_width; uint32_t img_height; } __attribute__((aligned(4))) my_kl630_sin_example_header_t; typedef struct { /* header stamp is necessary */ kp_inference_header_stamp_t header_stamp; my_kl630_sin_example_yolo_result_t yolo_result; } __attribute__((aligned(4))) my_kl630_sin_example_result_t;
-
-
Add my_kl630_sin_example.c
-
There are 6 steps for inferencing in Kneron AI device:
-
Connect Kneron AI device.
-
Upload the firmware to AI device.
-
Upload the model to AI device.
-
Prepare data for the header.
-
Send the header and image buffer to firmware via kp_customized_inference_send().
-
Receive the result from firmware via kp_customized_inference_receive().
-
-
In this example, the image is transcoded into RGB565, and the width and height of the image is carried by the header.
-
Sending header and receiving result can be executed sequentially or on two different threads.
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "kp_core.h" #include "kp_inference.h" #include "helper_functions.h" #include "my_kl630_sin_example.h" static char _scpu_fw_path[128] = "../../res/firmware/KL630/kp_firmware.tar"; static char _model_file_path[128] = "../../res/models/KL630/YoloV5s_640_640_3/models_630.nef"; static char _image_file_path[128] = "../../res/images/one_bike_many_cars_608x608.bmp"; static int _loop = 10; int main(int argc, char *argv[]) { kp_device_group_t device; kp_model_nef_descriptor_t model_desc; int ret; /******* connect the device *******/ { int port_id = 0; // 0 for one device auto-search int error_code; // internal parameter to indicate the desired port id if (argc > 1) { port_id = atoi(argv[1]); } // connect device device = kp_connect_devices(1, &port_id, &error_code); if (!device) { printf("connect device failed, port ID = '%d', error = '%d'\n", port_id, error_code); exit(0); } kp_set_timeout(device, 5000); printf("connect device ... OK\n"); } /******* upload firmware to device *******/ { ret = kp_load_firmware_from_file(device, _scpu_fw_path, NULL); if (ret != KP_SUCCESS) { printf("upload firmware failed, error = %d\n", ret); exit(0); } printf("upload firmware ... OK\n"); } /******* upload model to device *******/ { ret = kp_load_model_from_file(device, _model_file_path, &model_desc); if (ret != KP_SUCCESS) { printf("upload model failed, error = %d\n", ret); exit(0); } printf("upload model ... OK\n"); } /******* prepare the image buffer read from file *******/ // here convert a bmp file to RGB565 format buffer int img_width, img_height; char *img_buf = helper_bmp_file_to_raw_buffer(_image_file_path, &img_width, &img_height, KP_IMAGE_FORMAT_RGB565); if (!img_buf) { printf("read image file failed\n"); exit(0); } printf("read image ... OK\n"); printf("\nstarting inference loop %d times:\n", _loop); /******* prepare input and output header/buffers *******/ my_kl630_sin_example_header_t input_header; my_kl630_sin_example_result_t output_result; input_header.header_stamp.job_id = MY_KL630_SIN_EXAMPLE_JOB_ID; input_header.header_stamp.total_image = 1; input_header.header_stamp.image_index = 0; input_header.img_width = img_width; input_header.img_height = img_height; int header_size = sizeof(my_kl630_sin_example_header_t); int image_size = img_width * img_height * 2; // RGB565 int result_size = sizeof(my_kl630_sin_example_result_t); int recv_size = 0; /******* starting inference work *******/ for (int i = 0; i < _loop; i++) { ret = kp_customized_inference_send(device, (void *)&input_header, header_size, (uint8_t *)img_buf, image_size); if (ret != KP_SUCCESS) { break; } ret = kp_customized_inference_receive(device, (void *)&output_result, result_size, &recv_size); if (ret != KP_SUCCESS) { break; } printf("\n[loop %d]\n", i + 1); helper_print_yolo_box_on_bmp((kp_yolo_result_t *)&output_result.yolo_result, _image_file_path); } printf("\n"); if (ret != KP_SUCCESS) { printf("\ninference failed, error = %d\n", ret); return -1; } free(img_buf); kp_disconnect_devices(device); return 0; }
-
3. Firmware Development
Note: For further information of KL630 VMF_NNM, please refer Vienna_NNM_Programming_Guide.pdf in {KL630_SDK_TOP_FOLDER_PATH}/03_SDK/01_Documents/
-
Go to App Flow Folder {KL630_SDK_FOLDER_PATH}/apps/vmf_nnm/solution/app_flow
-
Add my_kl630_sin_example_inf.h into include folder
- The content of this file should be synchronized with my_kl630_sin_example.h in PLUS.
#include "kp_struct.h" #define MY_KL630_SIN_EXAMPLE_JOB_ID 3003 #define YOLO_BOX_MAX 100 typedef struct { uint32_t class_count; uint32_t box_count; kp_bounding_box_t boxes[YOLO_BOX_MAX]; } __attribute__((aligned(4))) my_kl630_sin_example_yolo_result_t; typedef struct { /* header stamp is necessary */ kp_inference_header_stamp_t header_stamp; uint32_t img_width; uint32_t img_height; } __attribute__((aligned(4))) my_kl630_sin_example_header_t; typedef struct { /* header stamp is necessary */ kp_inference_header_stamp_t header_stamp; my_kl630_sin_example_yolo_result_t yolo_result; } __attribute__((aligned(4))) my_kl630_sin_example_result_t; void my_kl630_sin_example_inf(int job_id, int num_input_buf, void **inf_input_buf_list); void my_kl630_sin_example_inf_deinit();
-
Add my_kl630_sin_example_inf.c
-
There are four steps for inferencing in one model:
-
Prepare the memory space for the result.
-
Prepare VMF_NNM_INFERENCE_APP_CONFIG_T, which is used for configure the inference process.
-
Activate NCPU firmware via VMF_NNM_Inference_App_Execute().
-
Send the result to PLUS via VMF_NNM_Fifoq_Manager_Result_Enqueue().
-
-
For the customized model, model_id of VMF_NNM_INFERENCE_APP_CONFIG_T should be set to the id of the customized model.
-
For the customized pre-process and post-process, please provide the function pointer to pre_proc_func and post_proc_func of VMF_NNM_INFERENCE_APP_CONFIG_T. Please refer Pre/Post Process for more information.
-
The inference result will be written to ncpu_result_buf of VMF_NNM_INFERENCE_APP_CONFIG_T. Therefore, you must provide a memory space for it (In this example, ncpu_result_buf is pointed to yolo_result in output_result.)
#include <stdint.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include "model_type.h" #include "vmf_nnm_inference_app.h" #include "vmf_nnm_fifoq_manager.h" #include "my_kl630_sin_example_inf.h" #include "yolov5_post_process.h" static yolo_post_proc_params_t post_proc_params_v5s = { .prob_thresh = 0.15, .nms_thresh = 0.5, .max_detection_per_class = 20, .anchor_row = 3, .anchor_col = 6, .stride_size = 3, .reserved_size = 0, .data = { // anchors[3][6] 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326, // strides[3] 8, 16, 32, }, }; void my_kl630_sin_example_inf(int job_id, int num_input_buf, void **inf_input_buf_list) { if (1 != num_input_buf) { VMF_NNM_Fifoq_Manager_Status_Code_Enqueue(job_id, KP_FW_WRONG_INPUT_BUFFER_COUNT_110); return; } int result_buf_size; uint32_t inf_result_buf; uint32_t inf_result_phy_addr; /******* Prepare the memory space of result *******/ if (0 != VMF_NNM_Fifoq_Manager_Result_Get_Free_Buffer(&inf_result_buf, &inf_result_phy_addr, &result_buf_size, -1)) { printf("[%s] get result free buffer failed\n", __FUNCTION__); return; } my_kl630_sin_example_header_t *input_header = (my_kl630_sin_example_header_t *)inf_input_buf_list[0]; my_kl630_sin_example_result_t *output_result = (my_kl630_sin_example_result_t *)inf_result_buf; /******* Prepare the configuration *******/ VMF_NNM_INFERENCE_APP_CONFIG_T inf_config; // Set the initial value of config to 0, false and NULL memset(&inf_config, 0, sizeof(VMF_NNM_INFERENCE_APP_CONFIG_T)); // image buffer address should be just after the header inf_config.num_image = 1; inf_config.image_list[0].image_buf = (void *)((uint32_t)input_header + sizeof(my_kl630_sin_example_header_t)); inf_config.image_list[0].image_width = input_header->img_width; inf_config.image_list[0].image_height = input_header->img_height; inf_config.image_list[0].image_channel = 3; // assume RGB565 inf_config.image_list[0].image_format = KP_IMAGE_FORMAT_RGB565; // assume RGB565 inf_config.image_list[0].image_norm = KP_NORMALIZE_KNERON; // this depends on model inf_config.image_list[0].image_resize = KP_RESIZE_ENABLE; // enable resize inf_config.image_list[0].image_padding = KP_PADDING_CORNER; // enable padding on corner inf_config.model_id = KNERON_YOLOV5S_COCO80_640_640_3; // this depends on model inf_config.ncpu_result_buf = (void *)&(output_result->yolo_result); // give result buffer for ncpu/npu, callback will carry it inf_config.user_define_data = (void *)&post_proc_params_v5s; // yolo post-process configurations for yolo v3 series inf_config.post_proc_func = yolov5_no_sigmoid_post_process; // yolo post-process function /******* Activate inferencing in NCPU *******/ int inf_status = VMF_NNM_Inference_App_Execute(&inf_config); /******* Send the result to PLUS *******/ // header_stamp is a must to correctly transfer result data back to host SW output_result->header_stamp.magic_type = KDP2_MAGIC_TYPE_INFERENCE; output_result->header_stamp.total_size = sizeof(my_kl630_sin_example_result_t); output_result->header_stamp.job_id = job_id; output_result->header_stamp.status_code = inf_status; // send output result buffer back to host SW VMF_NNM_Fifoq_Manager_Result_Enqueue(inf_result_buf, inf_result_phy_addr, result_buf_size, -1, false); } void my_kl630_sin_example_inf_deinit() { //there is no temp buffer need to release in this model }
-
-
Go to Companion Solution Folder {KL630_SDK_FOLDER_PATH}/apps/vmf_nnm/solution/solution_companion_user_ex
-
Edit application_init.c
-
_app_func is the entry interface for all inference request.
-
Inference jobs will be dispatched to the coresponding function based on the job_id in kp_inference_header_stamp_t in the header.
-
You need to establish a switch case for MY_KL630_SIN_EXAMPLE_JOB_ID and corespond the switch case to my_kl630_sin_example_inf().
#include <stdio.h> #include <stdlib.h> #include <signal.h> #include <string.h> #include <sys/stat.h> #include <sys/time.h> #include <getopt.h> #include <unistd.h> #include <vmf_nnm_inference_app.h> #include <vmf_nnm_fifoq_manager.h> // inference app #include "kdp2_inf_app_yolo.h" #include "demo_customize_inf_single_model.h" #include "demo_customize_inf_multiple_models.h" #include "application_init.h" /* ======================================== */ /* Add Line Begin */ /* ======================================== */ #include "my_kl630_sin_example_inf.h" /* ======================================== */ /* Add Line End */ /* ======================================== */ /** * @brief To register AI applications * @param[in] num_input_buf number of data inputs in list * @param[in] inf_input_buf_list list of data input for inference task * @return N/A * @note Add a switch case item for a new inf_app application */ static void _app_func(int num_input_buf, void** inf_input_buf_list); static void _app_func(int num_input_buf, void** inf_input_buf_list) { // check header stamp if (0 >= num_input_buf) { kmdw_printf("No input buffer for app function\n"); return; } kp_inference_header_stamp_t *header_stamp = (kp_inference_header_stamp_t *)inf_input_buf_list[0]; uint32_t job_id = header_stamp->job_id; switch (job_id) { case KDP2_INF_ID_APP_YOLO: kdp2_app_yolo_inference(job_id, num_input_buf, inf_input_buf_list); break; case KDP2_JOB_ID_APP_YOLO_CONFIG_POST_PROC: kdp2_app_yolo_config_post_process_parameters(job_id, num_input_buf, inf_input_buf_list); break; case DEMO_KL630_CUSTOMIZE_INF_SINGLE_MODEL_JOB_ID: // a demo code implementation in SCPU for user-defined/customized infernece from one model demo_customize_inf_single_model(job_id, num_input_buf, inf_input_buf_list); break; case DEMO_KL630_CUSTOMIZE_INF_MULTIPLE_MODEL_JOB_ID: // a demo code implementation in SCPU for user-defined/customized infernece from two models demo_customize_inf_multiple_models(job_id, num_input_buf, inf_input_buf_list); break; /* ======================================== */ /* Add Line Begin */ /* ======================================== */ case MY_KL630_SIN_EXAMPLE_JOB_ID: my_kl630_sin_example_inf(job_id, num_input_buf, inf_input_buf_list); break; /* ======================================== */ /* Add Line End */ /* ======================================== */ default: VMF_NNM_Fifoq_Manager_Status_Code_Enqueue(job_id, KP_FW_ERROR_UNKNOWN_APP); printf("unsupported job_id %d \n",job_id); break; } } static void _app_func_deinit(unsigned int job_id); void _app_func_deinit(unsigned int job_id) { switch (job_id) { case KDP2_INF_ID_APP_YOLO: kdp2_app_yolo_inference_deinit(); break; case DEMO_KL630_CUSTOMIZE_INF_SINGLE_MODEL_JOB_ID: demo_customize_inf_single_model_deinit(); break; case DEMO_KL630_CUSTOMIZE_INF_MULTIPLE_MODEL_JOB_ID: demo_customize_inf_multiple_model_deinit(); break; /* ======================================== */ /* Add Line Begin */ /* ======================================== */ case MY_KL630_SIN_EXAMPLE_JOB_ID: my_kl630_sin_example_inf_deinit(); break; /* ======================================== */ /* Add Line End */ /* ======================================== */ default: printf("%s, unsupported job_id %d \n", __func__, job_id); break; } } void app_initialize(void) { printf(">> Start running KL630 KDP2 companion mode ...\n"); /* initialize inference app */ /* register APP functions */ /* specify depth of inference queues */ VMF_NNM_Inference_App_Init(_app_func); VMF_NNM_Fifoq_Manager_Init(); return; } void app_destroy(void) { _app_func_deinit(KDP2_INF_ID_APP_YOLO); _app_func_deinit(DEMO_KL630_CUSTOMIZE_INF_SINGLE_MODEL_JOB_ID); _app_func_deinit(DEMO_KL630_CUSTOMIZE_INF_MULTIPLE_MODEL_JOB_ID); /* ======================================== */ /* Add Line Begin */ /* ======================================== */ _app_func_deinit(MY_KL630_SIN_EXAMPLE_JOB_ID); /* ======================================== */ /* Add Line End */ /* ======================================== */ VMF_NNM_Inference_App_Destroy(); VMF_NNM_Fifoq_Manager_Destroy(); }
-
4. Pre-process and Post-process Development
If the customized models need a customized pre-process or post-process on Kneron AI device, you can add the pre-process and post-process in the following files.
-
Go to NCPU Project Main Folder {KL630_SDK_FOLDER_PATH}/apps/vmf_nnm/solution/app_flow/pre_post_proc
-
Add your customized pre-process/post-process header file into include folder.
-
Add your customized post-process/post-process implementation c file into current folder.
-
Register the pre/post process into pre_proc_func and post_proc_func of VMF_NNM_INFERENCE_APP_CONFIG_T during firmware development.
-
If pre_proc_func of VMF_NNM_INFERENCE_APP_CONFIG_T is not set, hardware auto pre-process will be adapted during inference flow.
-
If post_proc_func of VMF_NNM_INFERENCE_APP_CONFIG_T is not set, inference raw output data will be put into result buffer without post-process.
-
Note: During developing the post-processing, you must be aware of what pre-process has done, including image resize, image padding, and image cropping.
Note: In post-processing, the memory layout of data in raw_cnn_res_t for KL520, KL630 and KL720 are different. Please reference Kneron NPU Raw Output Channel Order.