Create KL720 Multiple Models Example
1. Download Source Code
-
Download the latest kneron_plus_vXXX.zip into Windows from https://www.kneron.com/tw/support/developers/. It is located at Kneron PLUS section.
-
Unzip kneron_plus_vXXX.zip
Note: {PLUS_FOLDER_PATH} will be used below for representing the unzipped folder path of PLUS.
2. PLUS (Software) Development
-
Create my_kl720_mul_example folder
$ cd {PLUS_FOLDER_PATH}/examples/ $ mkdir my_kl720_mul_example
-
Add CMakelists.txt
# build with current *.c/*.cpp plus common source files in parent folder # executable name is current folder name. get_filename_component(app_name ${CMAKE_CURRENT_SOURCE_DIR} NAME) string(REPLACE " " "_" app_name ${app_name}) file(GLOB local_src "*.c" "*.cpp" ) set(common_src ../../ex_common/helper_functions.c ) add_executable(${app_name} ${local_src} ${common_src}) target_link_libraries(${app_name} ${KPLUS_LIB_NAME} ${USB_LIB} ${MATH_LIB} pthread)
-
Add my_kl720_mul_example.h
-
Please define the customized header structure and customized result structure in this file.
-
Header (my_kl720_mul_example_header_t) is used for sending data to SCPU firmware. What kind of data should be contained can be customized based on the your requirement.
-
Result (my_kl720_mul_example_result_t) is used for receiving data from SCPU firmware. What kind of data should be contained can be customized based on the output of model inference.
-
kp_inference_header_stamp_t must be contained in both header and result structures.
-
The JOB_ID describes the unique id of the task you want to execute in firmware, and it must be unique and above 1000.
-
This file should be synchronized with the .h file in SCPU firmware.
#pragma once #define MY_KL720_MUL_EXAMPLE_JOB_ID 2003 #define DME_OBJECT_MAX 80 /** * @brief describe a pedestrian detect classification result of one detected person */ typedef struct { float pd_class_socre; /**< a pedestrian classification score */ kp_bounding_box_t pd; /**< a pedestrian box information */ } __attribute__((aligned(4))) one_pd_classification_result_t; /** * @brief describe a pedestrian detect classification output result */ typedef struct { uint32_t box_count; /**< boxes of all classes */ one_pd_classification_result_t pds[DME_OBJECT_MAX]; /**< pedestrian detect information */ } __attribute__((aligned(4))) pd_classification_result_t; typedef struct { /* header stamp is necessary for data transfer between host and device */ kp_inference_header_stamp_t header_stamp; uint32_t width; uint32_t height; } __attribute__((aligned(4))) my_kl720_mul_example_header_t; // result (header + data) for 'Customize Inference Multiple Models' typedef struct { /* header stamp is necessary for data transfer between host and device */ kp_inference_header_stamp_t header_stamp; pd_classification_result_t pd_classification_result; } __attribute__((aligned(4))) my_kl720_mul_example_result_t;
-
-
Add my_kl720_mul_example.c
-
There are 5 steps for inferencing in Kneron AI device:
-
Connect Kneron AI device.
-
Upload the model to AI device.
-
Prepare data for the header.
-
Send the header and image buffer to SCPU firmware via kp_customized_inference_send().
-
Receive the result from SCPU firmware via kp_customized_inference_receive().
-
-
In this example, the image is transcoded into RGB565, and the width and height of the image is carried by the header.
-
Sending header and receiving result can be executed sequentially or on two different threads.
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "kp_core.h" #include "kp_inference.h" #include "helper_functions.h" #include "my_kl720_mul_example.h" static char _model_file_path[128] = "../../res/models/KL720/yolov5_pd/models_720.nef"; static char _image_file_path[128] = "../../res/images/travel_walk_480x256.bmp"; static int _loop = 10; int main(int argc, char *argv[]) { kp_devices_list_t *device_list; kp_device_group_t device; kp_model_nef_descriptor_t model_desc; // each device has a unique port ID, 0 for auto-search int port_id = (argc > 1) ? atoi(argv[1]) : 0; int ret; /******* check the device USB speed *******/ { int link_speed; device_list = kp_scan_devices(); helper_get_device_usb_speed_by_port_id(device_list, port_id, &link_speed); if (KP_USB_SPEED_SUPER != link_speed) printf("[warning] device is not run at super speed.\n"); } /******* connect the device *******/ { int error_code; // connect device device = kp_connect_devices(1, &port_id, &error_code); if (!device) { printf("error ! connect device failed, port ID = '%d', error = '%d'\n", port_id, error_code); exit(0); } kp_set_timeout(device, 5000); printf("connect device ... OK\n"); } /******* upload model to device *******/ { ret = kp_load_model_from_file(device, _model_file_path, &model_desc); if (KP_SUCCESS != ret) { printf("error ! upload model failed, error = %d\n", ret); exit(0); } printf("upload model ... OK\n"); } /******* prepare the image buffer read from file *******/ // here convert a bmp file to RGB565 format buffer int img_width, img_height; char *img_buf = helper_bmp_file_to_raw_buffer(_image_file_path, &img_width, &img_height, KP_IMAGE_FORMAT_RGB565); if (!img_buf) { printf("error ! read image file failed\n"); exit(0); } printf("read image ... OK\n"); printf("\nstarting inference loop %d times:\n", _loop); /******* prepare input and output header/buffers *******/ my_kl720_mul_example_header_t input_header; my_kl720_mul_example_result_t output_result; pd_classification_result_t* pd_classification_result = &output_result.pd_classification_result; input_header.header_stamp.job_id = MY_KL720_MUL_EXAMPLE_JOB_ID; input_header.header_stamp.total_image = 1; input_header.header_stamp.image_index = 0; input_header.img_width = img_width; input_header.img_height = img_height; int header_size = sizeof(my_kl720_mul_example_header_t); int image_size = img_width * img_height * 2; // RGB565 int result_size = sizeof(my_kl720_mul_example_result_t); int recv_size = 0; /******* starting inference work *******/ for (int i = 0; i < _loop; i++) { ret = kp_customized_inference_send(device, (void *)&input_header, header_size, (uint8_t *)img_buf, image_size); if (KP_SUCCESS != ret) { printf("\ninference failed, error = %d\n", ret); break; } ret = kp_customized_inference_receive(device, (void *)&output_result, result_size, &recv_size); if (KP_SUCCESS != ret) { printf("\ninference failed, error = %d\n", ret); break; } printf("\n[loop %d]\n", i + 1); for (int j = 0; j < pd_classification_result->box_count; j++) { printf("Box %d (x1, y1, x2, y2, class, score, pb score) = (%d, %d), (%d, %d), %d, %f, %f\n", j + 1, (int)pd_classification_result->pds[j].pd.x1, (int)pd_classification_result->pds[j].pd.y1, (int)pd_classification_result->pds[j].pd.x2, (int)pd_classification_result->pds[j].pd.y2, (int)pd_classification_result->pds[j].pd.class_num, pd_classification_result->pds[j].pd.score, pd_classification_result->pds[j].pd_class_score); } } printf("\n"); free(img_buf); kp_release_model_nef_descriptor(&model_desc); kp_disconnect_devices(device); return 0; }
-
3. SCPU Firmware Development for pedestrian detection + pedestrian classification
-
Go to SCPU App Folder {PLUS_FOLDER_PATH}/firmware_development/KL720/firmware/app
-
Add my_kl720_mul_example_inf.h into include folder
- The content of this file should be synchronized with my_kl720_mul_example.h in PLUS.
#pragma once #include "model_res.h" #define MY_KL720_MUL_EXAMPLE_JOB_ID 2003 /** * @brief describe a pedestrian detect classification result of one detected person */ typedef struct { float pd_class_socre; /**< a pedestrian classification score */ kp_bounding_box_t pd; /**< a pedestrian box information */ } __attribute__((aligned(4))) one_pd_classification_result_t; /** * @brief describe a pedestrian detect classification output result */ typedef struct { uint32_t box_count; /**< boxes of all classes */ one_pd_classification_result_t pds[DME_OBJECT_MAX]; /**< pedestrian detect information */ } __attribute__((aligned(4))) pd_classification_result_t; typedef struct { /* header stamp is necessary for data transfer between host and device */ kp_inference_header_stamp_t header_stamp; uint32_t width; uint32_t height; } __attribute__((aligned(4))) my_kl720_mul_example_header_t; // result (header + data) for 'Customize Inference Multiple Models' typedef struct { /* header stamp is necessary for data transfer between host and device */ kp_inference_header_stamp_t header_stamp; pd_classification_result_t pd_classification_result; } __attribute__((aligned(4))) my_kl720_mul_example_result_t; void my_kl720_mul_example_inf(int job_id, int num_input_buf, void **inf_input_buf_list);
-
Add my_kl720_mul_example_inf.c
-
There are 8 steps for inferencing in pedestrian detect model and pedestrian classification model:
-
Prepare the memory space for the result.
-
Prepare header of output result.
-
Prepare the temporary memory space for the result of middle model via kmdw_ddr_reserve()
-
Prepare kmdw_inference_app_config_t for pedestrian detect model, which is used for configure the inference in NCPU firmware.
-
Activate NCPU firmware for pedestrian detect model via kmdw_inference_app_execute().
-
Prepare kmdw_inference_app_config_t for pedestrian classification model.
-
Activate NCPU firmware for pedestrian classification model via kmdw_inference_app_execute().
-
Send the result to PLUS via kmdw_fifoq_manager_result_enqueue().
-
-
For the customized model, model_id of kmdw_inference_app_config_t should be set to the id of the customized model.
-
The inference result of NCPU will be written to ncpu_result_buf of kmdw_inference_app_config_t. Therefore, you must provide a memory space for it (In this example, ncpu_result_buf is pointed to pd_result for pedestrian detect model, and imagenet_result for pedestrian classification model.)
-
For the detail of kmdw_inference_app_config_t, please refer to section NCPU Firmware Configuration
#include <stdint.h> #include <stdlib.h> #include <string.h> #include "model_type.h" #include "kmdw_console.h" #include "kmdw_inference_app.h" #include "kmdw_fifoq_manager.h" #include "my_kl720_mul_example_inf.h" // for pedestrian detection result, should be in DDR static struct yolo_result_s *pd_result = NULL; static struct imagenet_result_s *imagenet_result = NULL; /** * @brief describe a yolo post-process configurations for yolo v5 series */ typedef struct { float prob_thresh; float nms_thresh; uint32_t max_detection_per_class; uint16_t anchor_row; uint16_t anchor_col; uint16_t stride_size; uint16_t reserved_size; uint32_t data[40]; } __attribute__((aligned(4))) kp_app_yolo_post_proc_config_t; static kp_app_yolo_post_proc_config_t post_proc_params_v5s = { .prob_thresh = 0.3, .nms_thresh = 0.65, .max_detection_per_class = 20, .anchor_row = 3, .anchor_col = 6, .stride_size = 3, .reserved_size = 0, .data = { // anchors[3][6] 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326, // strides[3] 8, 16, 32, }, }; static bool init_temp_buffer() { // allocate DDR memory for ncpu/npu output restult pd_result = (struct yolo_result_s *)kmdw_ddr_reserve(sizeof(struct yolo_result_s) + DME_OBJECT_MAX * sizeof(struct bounding_box_s)); if (pd_result == NULL) return false; imagenet_result = (struct imagenet_result_s *)kmdw_ddr_reserve(sizeof(struct imagenet_result_s) * IMAGENET_TOP_MAX); if (imagenet_result == NULL) return false; return true; } static int inference_pedestrian_detection(my_kl720_mul_example_header_t *_input_header, struct yolo_result_s *_pd_result /* output */) { // config image preprocessing and model settings kmdw_inference_app_config_t inf_config; memset(&inf_config, 0, sizeof(kmdw_inference_app_config_t)); // for safety let default 'bool' to 'false' // image buffer address should be just after the header inf_config.num_image = 1; inf_config.image_list[0].image_buf = (void *)((uint32_t)_input_header + sizeof(my_kl720_mul_example_header_t)); inf_config.image_list[0].image_width = _input_header->width; inf_config.image_list[0].image_height = _input_header->height; inf_config.image_list[0].image_channel = 3; // assume RGB565 inf_config.image_list[0].image_format = KP_IMAGE_FORMAT_RGB565; // assume RGB565 inf_config.image_list[0].image_norm = KP_NORMALIZE_KNERON; // this depends on model inf_config.image_list[0].image_resize = KP_RESIZE_ENABLE; // enable resize inf_config.image_list[0].image_padding = KP_PADDING_CORNER; // enable padding on corner inf_config.model_id = KNERON_PERSONDETECTION_YOLOV5sParklot_480_256_3; // this depends on model inf_config.user_define_data = (void *)&post_proc_params_v5s; // yolo post-process configurations for yolo v5 series // set up fd result output buffer for ncpu/npu inf_config.ncpu_result_buf = (void *)_pd_result; return kmdw_inference_app_execute(&inf_config); } static int inference_pedestrian_imagenet_classification(my_kl720_mul_example_header_t *_input_header, struct bounding_box_s *_box, struct imagenet_result_s * _imagenet_result/* output */) { // config image preprocessing and model settings kmdw_inference_app_config_t inf_config; memset(&inf_config, 0, sizeof(kmdw_inference_app_config_t)); // for safety let default 'bool' to 'false' int32_t left = (int32_t)(_box->x1); int32_t top = (int32_t)(_box->y1); int32_t right = (int32_t)(_box->x2); int32_t bottom = (int32_t)(_box->y2); // image buffer address should be just after the header inf_config.num_image = 1; inf_config.image_list[0].image_buf = (void *)((uint32_t)_input_header + sizeof(my_kl720_mul_example_header_t)); inf_config.image_list[0].image_width = _input_header->width; inf_config.image_list[0].image_height = _input_header->height; inf_config.image_list[0].image_channel = 3; // assume RGB565 inf_config.image_list[0].image_format = KP_IMAGE_FORMAT_RGB565; // assume RGB565 inf_config.image_list[0].image_norm = KP_NORMALIZE_KNERON; // this depends on model inf_config.image_list[0].image_resize = KP_RESIZE_ENABLE; // enable resize inf_config.image_list[0].image_padding = KP_PADDING_DISABLE; // disable padding inf_config.image_list[0].enable_crop = true; // enable crop image in ncpu/npu inf_config.model_id = KNERON_PERSONCLASSIFIER_MB_56_32_3; // this depends on model // set crop box inf_config.image_list[0].crop_area.crop_number = 0; inf_config.image_list[0].crop_area.x1 = left; inf_config.image_list[0].crop_area.y1 = top; inf_config.image_list[0].crop_area.width = right - left; inf_config.image_list[0].crop_area.height = bottom - top; // set up fd result output buffer for ncpu/npu inf_config.ncpu_result_buf = (void *)_imagenet_result; return kmdw_inference_app_execute(&inf_config); } void my_kl720_mul_example_inf(int job_id, int num_input_buf, void **inf_input_buf_list) { if (1 != num_input_buf) { kmdw_inference_app_send_status_code(job_id, KP_FW_WRONG_INPUT_BUFFER_COUNT_110); return; } my_kl720_mul_example_header_t *input_header = (my_kl720_mul_example_header_t *)inf_input_buf_list[0]; /******* Prepare the memory space of result *******/ int result_buf_size; void *inf_result_buf = kmdw_fifoq_manager_result_get_free_buffer(&result_buf_size); my_kl720_mul_example_result_t *output_result = (my_kl720_mul_example_result_t *)inf_result_buf; /******* Prepare header of output result *******/ output_result->header_stamp.magic_type = KDP2_MAGIC_TYPE_INFERENCE; output_result->header_stamp.total_size = sizeof(my_kl720_mul_example_result_t); output_result->header_stamp.job_id = job_id; /******* Prepare the temporary memory space for the result of middle model *******/ static bool is_init = false; if (!is_init) { int status = init_temp_buffer(); if (!status) { // notify host error ! output_result->header_stamp.status_code = KP_FW_DDR_MALLOC_FAILED_102; kmdw_fifoq_manager_result_enqueue((void *)output_result, result_buf_size, false); return; } is_init = true; } /******* Run face detect model *******/ inf_status = inference_pedestrian_detection(input_header, pd_result); if (inf_status != KP_SUCCESS) { // notify host error ! output_result->header_stamp.status_code = inf_status; kmdw_fifoq_manager_result_enqueue((void *)output_result, result_buf_size, false); return; } int box_count = 0; int max_box_count = (pd_result->box_count > DME_OBJECT_MAX) ? DME_OBJECT_MAX : pd_result->box_count; pd_classification_result_t *pd_classification_result = &output_result->pd_classification_result; for (int i = 0; i < max_box_count; i++) { struct bounding_box_s *box = &pd_result->boxes[i]; // do face landmark for each faces inf_status = inference_pedestrian_imagenet_classification(input_header, box, imagenet_result); if (KP_SUCCESS != inf_status) { // notify host error ! output_result->header_stamp.status_code = inf_status; kmdw_fifoq_manager_result_enqueue((void *)output_result, result_buf_size, false); return; } // pedestrian_imagenet_classification result (class 0 : background, class 1: person) if (1 == imagenet_result[0].index) pd_classification_result->pds[box_count].pd_class_socre = imagenet_result[0].score; else pd_classification_result->pds[box_count].pd_class_socre = imagenet_result[1].score; memcpy(&pd_classification_result->pds[box_count].pd, box, sizeof(kp_bounding_box_t)); box_count++; } pd_classification_result->box_count = box_count; output_result->header_stamp.status_code = KP_SUCCESS; output_result->header_stamp.total_size = sizeof(my_kl720_mul_example_result_t) - sizeof(pd_classification_result_t) + sizeof(pd_classification_result->box_count) + box_count * sizeof(one_pd_classification_result_t); // send output result buffer back to host SW kmdw_fifoq_manager_result_enqueue((void *)output_result, result_buf_size, false); }
-
-
Go to SCPU Project Main Folder {PLUS_FOLDER_PATH}/firmware_development/KL720/firmware/build/solution_kdp2_user_ex/main_scpu
-
Edit application_init.c
-
_app_func is the entry interface for all inference request.
-
Inference jobs will be dispatched to the coresponding function based on the job_id in kp_inference_header_stamp_t in the header.
-
You need to establish a switch case for MY_KL720_MUL_EXAMPLE_JOB_ID and corespond the switch case to my_kl720_mul_example_inf().
#include <stdio.h> #include "cmsis_os2.h" // inference core #include "kp_struct.h" #include "kmdw_console.h" #include "kmdw_inference_app.h" // inference app #include "kdp2_inf_app_yolo.h" #include "demo_customize_inf_single_model.h" #include "demo_customize_inf_multiple_models.h" /* ======================================== */ /* Add Line Begin */ /* ======================================== */ #include "my_kl720_mul_example_inf.h" /* ======================================== */ /* Add Line End */ /* ======================================== */ // inference client #include "kdp2_usb_companion.h" #define MAX_IMAGE_COUNT 10 /**< MAX inference input queue slot count */ #define MAX_RESULT_COUNT 10 /**< MAX inference output queue slot count */ /** * @brief To register AI applications * @param[in] num_input_buf number of data inputs in list * @param[in] inf_input_buf_list list of data input for inference task * @return N/A * @note Add a switch case item for a new inf_app application */ static void _app_func(int num_input_buf, void **inf_input_buf_list); void _app_func(int num_input_buf, void **inf_input_buf_list) { // check header stamp if (0 >= num_input_buf) { kmdw_printf("No input buffer for app function\n"); return; } void *first_inf_input_buf = inf_input_buf_list[0]; kp_inference_header_stamp_t *header_stamp = (kp_inference_header_stamp_t *)first_inf_input_buf; uint32_t job_id = header_stamp->job_id; switch (job_id) { case KDP2_INF_ID_APP_YOLO: kdp2_app_yolo_inference(job_id, num_input_buf, inf_input_buf_list); break; case KDP2_JOB_ID_APP_YOLO_CONFIG_POST_PROC: kdp2_app_yolo_config_post_process_parameters(job_id, num_input_buf, inf_input_buf_list); break; case DEMO_KL720_CUSTOMIZE_INF_SINGLE_MODEL_JOB_ID: // a demo code implementation in SCPU for user-defined/customized inference from one model demo_customize_inf_single_model(job_id, num_input_buf, inf_input_buf_list); break; case DEMO_KL720_CUSTOMIZE_INF_MULTIPLE_MODEL_JOB_ID: // a demo code implementation in SCPU for user-defined/customized inference from multiple model demo_customize_inf_multiple_model(job_id, num_input_buf, inf_input_buf_list); break; /* ======================================== */ /* Add Line Begin */ /* ======================================== */ case MY_KL720_MUL_EXAMPLE_JOB_ID: my_kl720_mul_example_inf(job_id, num_input_buf, inf_input_buf_list); break; /* ======================================== */ /* Add Line End */ /* ======================================== */ default: kmdw_inference_app_send_status_code(job_id, KP_FW_ERROR_UNKNOWN_APP); break; } } void app_initialize(void) { info_msg(">> Start running KL720 KDP2 companion mode ...\n"); /* initialize inference app */ /* register APP functions */ /* specify depth of inference queues */ kmdw_inference_app_init(_app_func, MAX_IMAGE_COUNT, MAX_RESULT_COUNT); /* companion mode init */ kdp2_usb_companion_init(); return; }
-
4. NCPU Firmware Development for The Pre-process and Post-process
If the customized model need a customized pre-process or post-process, you can add the pre-process and post-process in the following files.
-
Go to NCPU Project Main Folder {PLUS_FOLDER_PATH}/firmware_development/KL720/firmware/platform/kl720/ncpu/ncpu_main/src
-
Add your customized pre-process function into user_pre_process.c
-
Add your customized post-process function into user_post_process.c
-
You may reference the pre_post_proc_template.c for guidance of how to access from input/output node of the model
-
Edit model_ftr_table.c
-
Add your customized pre-process into model_pre_proc_fns table with the ID of your model.
-
Add your customized post-process into model_post_proc_fns talbe with the ID of your model.
-
Once pre-process and post-process are registered, they will automatically execute before and after the inference of model.
-
The pre-process and post-process for certain model are specified by the model Id.
-
Note: During developing the post-processing, you must be aware of what pre-process has done, including image resize, image padding, and image cropping.
Note: In post-processing, the memory layout of data in raw_cnn_res_t for KL520 and KL720 are different. Please reference Kneron NPU Raw Output Channel Order.